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Introduction 

The rise in antimicrobial resistance (AMR) continues to be a global crisis [1, 2]. Collectively, 

antimicrobial resistant pathogens caused more than 2.8 million infections and over 35,000 deaths 

annually in the United States from 2012 through 2017, according to the 2019 Centers for Disease 

Control and Prevention (CDC) Antibiotic Resistant Threats Report [2]. The selection of effective 

antibiotics for the treatment of infections by resistant pathogens is challenging [3]. Although there has 

been an increase in the availability of novel antibiotics to combat resistant infections in recent years [3], 

resistance to a number of these agents has been observed [4]. Three groups of antimicrobial resistant 

Gram-negative bacteria pose particular therapeutic challenges: (1) extended-spectrum β-lactamase 

producing Enterobacterales (ESBL-E), (2) carbapenem-resistant Enterobacterales (CRE), and (3) 

Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa) [5]. These pathogens 

have been designated urgent or serious threats by the CDC [2]. They are encountered in US hospitals of 

all sizes and cause a wide range of serious infections that carry significant morbidity and mortality. 

Treatment options against ESBL-E, CRE, and DTR-P. aeruginosa infections remain limited despite 

approval of new antibiotics. There is often uncertainty about the precise role(s) of new agents in clinical 

practice [6-8]. 

The Infectious Diseases Society of America (IDSA) identified the development and dissemination 

of clinical practice guidelines and other guidance products for clinicians as a top initiative in its 2019 

Strategic Plan [9]. IDSA acknowledged that the ability to address rapidly evolving topics such as AMR was 

limited by prolonged timelines needed to generate new or updated clinical practice guidelines. As an 

alternative and complement to comprehensive clinical practice guidelines, IDSA endorsed developing 

more narrowly focused guidance documents for the treatment of specific infectious processes. 

Guidance documents will address specific clinical questions for difficult-to-manage infections that are 

not covered by present guidelines. The documents will be prepared by a small team of experts based on 

a comprehensive (but not necessarily systematic) review of the literature. Additionally, such guidance 

documents will not include a formal grading of the evidence, unlike IDSA guidelines, which utilize the 

GRADE (Grading of Recommendations Assessment, Development, and Evaluation) framework. Over 

time, guidance documents may be transitioned to a GRADE format. Content will be disseminated on 

multiple platforms and updated as new data emerge. Treatment of antimicrobial resistant Gram-

negative bacterial infections was chosen as the initial topic for a guidance document. 
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The overarching goal of this guidance document is to assist clinicians – including those with and 

without infectious diseases expertise – in selecting antibiotic therapy for infections caused by ESBL-E, 

CRE, and DTR-P. aeruginosa. Future iterations of this document will address other resistant pathogens. 

Although brief descriptions of notable clinical trials, resistance mechanisms, and susceptibility testing 

methods are included, this guidance is not meant to provide a comprehensive review of these topics. 

The document is framed as answers to a series of clinical questions, each of which can stand on its own. 

Because of significant differences in the molecular epidemiology of resistance and availability of specific 

anti-infectives globally, the document focuses on treatment recommendations for antimicrobial 

resistant infections in the United States. 

 

Methodology 

This IDSA guidance document was developed by a panel of six actively practicing infectious 

diseases specialists with clinical and research expertise in the treatment of  resistant bacterial infections. 

Through a series of web-based meetings, the panel developed several commonly encountered 

treatment questions and corresponding answers for each pathogen group. They reached consensus on 

the recommendations for each question based on extensive review of the published literature, coupled 

with clinical experience. Answers include a brief discussion of the rationale supporting the 

recommendations. For each pathogen group, a table is provided with preferred and alternative 

treatment recommendations, after antimicrobial susceptibility data are known. Treatment 

recommendations apply to both adult and pediatric populations. Suggested antibiotic dosing for adult 

patients with antimicrobial resistant infections, assuming normal renal and hepatic function, is provided 

in Table 1. 

 

General Management Recommendations 

Preferred and alternative treatment recommendations in this guidance document assume that 

the causative organism has been identified and in vitro activity of antibiotics has been demonstrated. 

The cost of agents was not considered by the panel. Assuming two antibiotics are equally effective and 

safe, cost and local formulary availability are important considerations in selecting a specific agent. The 
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panel recommends that infectious diseases specialists are involved in the management of patients with 

antimicrobial resistant infections, if feasible. 

Empiric Therapy. Empiric treatment recommendations are not provided in this guidance document, 

since a given host at risk for infection by one of the pathogen groups is usually at risk of infection by 

other antimicrobial resistant pathogens. Empiric treatment decisions should be guided by local 

susceptibility patterns for the most likely pathogens. When determining empiric treatment for a given 

patient, clinicians should consider (1) previous organisms and associated antibiotic susceptibility data in 

the last six months and (2) antibiotic exposures in the past 30 days (e.g., if a treatment course of 

piperacillin-tazobactam was recently completed, consider empiric coverage with a Gram-negative agent 

from a different class that offers comparable spectrum of activity [e.g., meropenem]). Empiric decisions 

should be refined based on the severity of illness of the patient and the likely source of the infection 

(e.g., presumed ventilator-associated pneumonia typically warrants broader empiric coverage than 

presumed cystitis). 

Duration of Therapy. Recommendations on durations of therapy are not provided, but clinicians are 

advised that prolonged treatment courses are not necessary against infections by antimicrobial resistant 

pathogens per se, compared to infections caused by the same bacterial species with a more susceptible 

phenotype. After antibiotic susceptibility results are available, it may become apparent that inactive 

antibiotic therapy was initiated empirically. This may impact the duration of therapy. For example, 

cystitis is typically a mild infection. If an antibiotic not active against the causative organism was 

administered empirically for cystitis but clinical improvement nonetheless occurred, it is generally not 

necessary to repeat a urine culture, change the antibiotic regimen, or extend the planned treatment 

course [10]. However, for all other infections included here, if antibiotic susceptibility data indicate a 

potentially inactive agent was initiated empirically, a change to an active regimen for a full treatment 

course (dated from the start of active therapy) is recommended. Additionally, important host factors 

related to immune status, ability to attain source control, and general response to therapy should be 

considered when determining treatment durations for antimicrobial resistant infections, as with the 

treatment of any bacterial infection. 
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Extended-spectrum β-lactamase-Producing Enterobacterales (ESBL-E) 

The incidence of ESBL-E infections in the United States increased by 53% from 2012 through 

2017, in large part due to increased community-acquired infections [11]. ESBLs are enzymes that 

inactivate most penicillins, cephalosporins, and aztreonam. EBSL-E generally remain susceptible to 

carbapenems. ESBLs do not inactivate non-β-lactam agents (e.g., ciprofloxacin, trimethoprim-

sulfamethoxazole, gentamicin). However, organisms carrying ESBL genes often harbor additional genes 

or mutations in genes that mediate resistance to a broad range of antibiotics. 

Any Gram-negative organism has the potential to harbor ESBL genes; however, they are most 

prevalent in Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, and Proteus mirabilis [12, 13]. 

CTX-M enzymes, particularly CTX-M-15, are the most common ESBLs in the United States [13]. ESBLs 

other than CTX-M with unique hydrolyzing abilities have been identified, including variants of narrow-

spectrum TEM and SHV β-lactamases with amino acid substitutions [14-16]. Routine EBSL testing is not 

performed by most clinical microbiology laboratories [17, 18]. Rather, non-susceptibility to ceftriaxone 

(i.e., ceftriaxone minimum inhibitory concentrations [MICs] > 2 mcg/mL), is often used as a proxy for 

ESBL production [18]. For this guidance document, ESBL-E will refer to presumed or confirmed ESBL-

producing E. coli, K. pneumoniae, K. oxytoca, or P. mirabilis. Table 2 outlines preferred and alternative 

treatment recommendations for ESBL-E infections. Treatment recommendations for ESBL-E infections 

assume in vitro activity of preferred and alternative antibiotics has been demonstrated. 

 

Question 1: What are preferred antibiotics for the treatment of uncomplicated cystitis caused by 

ESBL-E? 

Recommendation: Nitrofurantoin and trimethoprim-sulfamethoxazole are preferred treatment options 

for uncomplicated cystitis caused by ESBL-E. 

Rationale: Nitrofurantoin and trimethoprim-sulfamethoxazole have been shown to be safe and effective 

options for cystitis [10, 19, 20]. 

Although fluoroquinolones (i.e., ciprofloxacin or levofloxacin) and carbapenems are effective 

agents against ESBL-E cystitis, their usage for cystitis is discouraged when other safe and effective 
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options are available. Limiting use of these agents serves to both preserve their activity for future 

infections and to limit associated toxicities, particularly with the fluoroquinolones. 

Amoxicillin-clavulanate, single-dose aminoglycosides, and oral fosfomycin are alternative 

options for ESBL-E cystitis. Amoxicillin-clavulanate is an alternative rather than preferred agent since 

randomized controlled trial data have shown it is associated with a higher clinical failure rate than 

ciprofloxacin for cystitis, presumably due to persistent vaginal bacterial colonization [21]. 

Aminoglycosides are nearly exclusively eliminated by the renal route in their active form. A single 

intravenous dose is generally effective for cystitis, with minimal toxicity, but robust trial data are lacking 

[22]. Oral fosfomycin is an alternative agent exclusively for treatment of ESBL-producing E. coli cystitis as 

the fosA gene, intrinsic to K. pneumoniae and several other Gram-negative organisms, can hydrolyze the 

drug and may lead to clinical failure [23, 24]. Randomized controlled trial data indicate that oral 

fosfomycin is associated with higher clinical failure than nitrofurantoin for uncomplicated cystitis [19]. 

Doxycycline is not recommended for the treatment of ESBL-E cystitis due to its limited urinary excretion 

[25]. 

 

Question 2: What are preferred antibiotics for the treatment of pyelonephritis and complicated 

urinary tract infections (cUTIs) caused by ESBL-E? 

Recommendation: Ertapenem, meropenem, imipenem-cilastatin, ciprofloxacin, levofloxacin, or 

trimethoprim-sulfamethoxazole are preferred treatment options for pyelonephritis and cUTIs caused by 

ESBL-E. 

Rationale: cUTIs are defined as a UTI occurring in association with a structural or functional abnormality 

of the genitourinary tract, or any UTI in a male patient. Carbapenems, ciprofloxacin, levofloxacin, and 

trimethoprim-sulfamethoxazole are all preferred treatment options for patients with ESBL-E 

pyelonephritis and cUTIs based on clinical experience and the ability of these agents to achieve high 

concentrations in the urine. If a carbapenem is initiated and susceptibility to ciprofloxacin, levofloxacin, 

or trimethoprim-sulfamethoxazole is demonstrated, transitioning to these agents is preferred over 

completing a treatment course with a carbapenem. Limiting use of carbapenem exposure in these 

situations will preserve their activity for future antimicrobial resistant infections. Nitrofurantoin and oral 

fosfomycin do not achieve adequate concentrations in the renal parenchyma and should be avoided if 
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the upper urinary tract is infected [26, 27]. Doxycycline is not recommended for the treatment of ESBL-E 

pyelonephritis or cUTIs due to its limited urinary excretion [25]. 

 

Question 3: What are preferred antibiotics for the treatment of infections outside of the urinary tract 

caused by ESBL-E? 

Recommendation: A carbapenem is preferred for the treatment of infections outside of the urinary tract 

caused by ESBL-E. 

Rationale: A carbapenem is recommended as first-line treatment of infections outside of the urinary 

tract caused by ESBL-E, based largely on data from a multicenter randomized controlled trial [28]. In this 

trial, 30-day mortality was reduced for patients with ESBL E. coli and K. pneumoniae bloodstream 

infections treated with meropenem compared to piperacillin-tazobactam [28]. Comparable clinical trial 

data are not available for infections of other body sites. Nevertheless, the panel recommends 

extrapolating evidence for ESBL-E bloodstream infections to other common sites of infection, namely 

intra-abdominal infections, skin and soft tissue infections, and pneumonia. 

The role of oral step-down therapy for ESBL-E non-urinary infections has not been formally 

evaluated. However, oral step-down therapy has been shown to be a reasonable treatment 

consideration for Enterobacterales bloodstream infections, including those caused by antimicrobial 

resistant isolates, after appropriate clinical milestones are observed [29, 30]. Based on the known 

bioavailability and sustained serum concentrations of oral fluoroquinolones and trimethoprim-

sulfamethoxazole, these agents are reasonable treatment options for patients with ESBL-E infections if 

(1) susceptibility to the oral agent is demonstrated, (2) patients are afebrile and hemodynamically 

stable, (3) appropriate source control is achieved, and (4) there are no issues with intestinal absorption. 

Clinicians should avoid oral step-down to nitrofurantoin, fosfomycin, doxycycline, or amoxicillin-

clavulanate for ESBL-E bloodstream infections. Nitrofurantoin and fosfomycin achieve poor serum 

concentrations. Amoxicillin-clavulanate and doxycycline achieve unreliable serum concentrations and 

are not recommended for ESBL-E bloodstream infections. 
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Question 4: Is there a role for piperacillin-tazobactam in the treatment of infections caused by ESBL-E 

when in vitro susceptibility to piperacillin-tazobactam is demonstrated? 

Recommendation: Piperacillin-tazobactam should be avoided for the treatment of infections caused by 

ESBL-E, even if susceptibility to piperacillin-tazobactam is demonstrated. If piperacillin-tazobactam was 

initiated as empiric therapy for cystitis caused by an organism later identified as an ESBL-E and clinical 

improvement occurs, no change or extension of antibiotic therapy is necessary. 

Rationale: Piperacillin-tazobactam demonstrates in vitro activity against a number of ESBL-E [31]. 

However, a randomized, controlled trial of ESBL-E bloodstream infections indicated inferior results with 

piperacillin-tazobactam compared to carbapenem therapy [28]. The effectiveness of piperacillin-

tazobactam in the treatment of invasive ESBL-E infections may be diminished by the potential for 

organisms to have increased expression of the ESBL enzyme or by the presence of multiple β-lactamases 

[32]. Additionally, piperacillin-tazobactam MIC testing may be inaccurate and/or poorly reproducible 

when ESBL enzymes are present [33-35]. 

 

Question 5: Is there a role for cefepime in the treatment of infections caused by ESBL-E when in vitro 

susceptibility to cefepime is demonstrated? 

Recommendation: Cefepime should be avoided for the treatment of infections caused by ESBL-E, even if 

susceptibility to cefepime is demonstrated. If cefepime was initiated as empiric therapy for cystitis 

caused by an organism later identified as an ESBL-E and clinical improvement occurs, no change or 

extension of antibiotic therapy is necessary. 

Rationale: Observational studies and a subgroup analysis of 23 patients in a randomized trial that 

compared cefepime and carbapenems for the treatment of invasive ESBL-E infections demonstrated 

either no difference in outcomes or poorer outcomes with cefepime [36-39]. Cefepime MIC testing may 

be inaccurate and/or poorly reproducible when ESBL enzymes are present [33, 34, 40]. 
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Question 6: What are preferred antibiotics in the treatment of infections caused by E. coli, K. 

pneumoniae, K. oxytoca, or P. mirabilis not susceptible to ceftriaxone if confirmatory phenotypic ESBL 

testing is negative? 

Recommendation: Antibiotic treatment selection can be based on susceptibility testing results if a locally 

validated ESBL phenotypic test does not indicate ESBL production. 

Rationale: Currently, there is no Clinical and Laboratory Standards Institute endorsed phenotypic 

method for confirmatory ESBL testing [18]. For hospitals with clinical microbiology laboratories that do 

not perform ESBL phenotypic testing, a ceftriaxone MIC > 2 mcg/mL should be used as a proxy for ESBL 

production by E. coli, K. pneumoniae, K. oxytoca, or P. mirabilis [18]. Phenotypic tests (e.g., double-disk 

synergy test, ETEST®, automated susceptibility platform algorithms) to exclude the possibility of ESBL 

production by clinical isolates should be interpreted with caution. Results should be used for clinical 

decision-making only after local laboratory validation of testing [41, 42]. 

 

Question 7: What is the preferred antibiotic for the treatment of bloodstream infections caused by 

ceftriaxone non-susceptible E. coli, K. pneumoniae, K. oxytoca, or P. mirabilis, if a blaCTX-M gene is not 

detected using a molecular platform that includes this target? 

Recommendation: Carbapenem therapy is preferred if a blaCTX-M gene is not detected in E. coli, K. 

pneumoniae, K. oxytoca, or P. mirabilis isolates that are not susceptible to ceftriaxone since the absence 

of a blaCTX-M gene does not exclude the presence of other ESBL genes. 

Rationale: Commercially available molecular platforms for β-lactamase gene detection from positive 

blood cultures (e.g., Verigene® Gram-Negative Blood Culture Test, GenMark ePlex® Blood Culture 

Identification Gram-negative Panel, etc.) limit ESBL detection to blaCTX-M genes. The absence of blaCTX-M 

genes in E. coli, K. pneumoniae, K. oxytoca, and P. mirabilis that are not susceptible to ceftriaxone (i.e., 

ceftriaxone MIC ≥ 2 mcg/mL) does not exclude the presence of other ESBL genes (e.g., blaSHV, blaTEM). 

Therefore, carbapenem therapy is recommended, at least initially. 
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Carbapenem-Resistant Enterobacterales (CRE) 

CRE account for more than 13,000 nosocomial infections and contribute to greater than 1,000 

deaths annually in the United States [2]. The CDC defines CRE as members of the Enterobacterales order 

resistant to at least one carbapenem antibiotic or producing a carbapenemase enzyme [2]. A CRE isolate 

may be resistant to some carbapenems (e.g., ertapenem) but not others (e.g., meropenem). CRE 

comprise a heterogenous group of pathogens with multiple potential mechanisms of resistance, broadly 

divided into those that are carbapenemase-producing and those that are not carbapenemase-

producing. Carbapenemase-producing isolates account for approximately half of all CRE infections in the 

United States [43-45]. The most common carbapenemases in the United States are Klebsiella 

pneumoniae carbapenemases (KPCs), which can be produced by any Enterobacterales. Other notable 

carbapenemases that have all been identified in the United States include New Delhi metallo-β-

lactamases (NDMs), Verona integron-encoded metallo-β-lactamases (VIMs), imipenem-hydrolyzing 

metallo-β-lactamases (IMPs), and oxacillinase (e.g., OXA-48-like) carbapenemases [46, 47]. Knowledge of 

whether a CRE clinical isolate is carbapenemase-producing and, if it is, the specific carbapenemase 

produced is important in guiding treatment decisions. 

Phenotypic tests such as the modified carbapenem inactivation method and the Carba NP test 

can differentiate carbapenemase and non-carbapenemase producing CRE [48]. Molecular testing can 

identify specific carbapenemase families (e.g., differentiating a KPC from an OXA-48-like 

carbapenemase). There are several molecular platforms used in US clinical microbiology laboratories to 

identify carbapenemase genes (e.g., Verigene® Gram-Negative Blood Culture Test, GenMark ePlex® 

Blood Culture Identification Gram-negative Panel, BioFire® FilmArray® Blood Culture Identification 

Panels, etc.). Phenotypic and/or genotypic testing are not performed by all clinical microbiology 

laboratories. Table 3 outlines preferred and alternative treatment recommendations for CRE infections. 

Treatment recommendations for CRE infections assume in vitro activity of preferred and alternative 

antibiotics has been demonstrated. 

 

Question 1: What are preferred antibiotics for the treatment of uncomplicated cystitis caused by CRE? 

Recommendation: Ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole, nitrofurantoin, or a 

single-dose of an aminoglycoside are preferred treatment options for uncomplicated cystitis caused by 
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CRE. Standard infusion meropenem is a preferred treatment option for cystitis caused by CRE resistant 

to ertapenem but susceptible to meropenem, when carbapenemase testing results are either not 

available or negative. 

Rationale: Clinical trial data evaluating the efficacy of most preferred agents for CRE cystitis are not 

available. However, as these agents achieve high concentrations in urine, they are expected to be 

effective for CRE cystitis, when active. Some agents that are listed as alternative options for ESBL-E 

cystitis are recommended as preferred agents for CRE cystitis. These agents are preferably avoided in 

treatment of ESBL-E cystitis in order to preserve their activity for more invasive infections. They are 

preferred agents against CRE cystitis because there are generally fewer treatment options against these 

infections. 

Aminoglycosides are almost exclusively eliminated by the renal route in their active form. A 

single intravenous dose is generally effective for cystitis, with minimal toxicity [22]. Individual 

aminoglycosides are equally effective if susceptibility is demonstrated. In general, higher percentages of 

CRE clinical isolates are susceptible to amikacin and plazomicin than to other aminoglycosides [49, 50]. 

Plazomicin may remain active against isolates resistant to amikacin. 

Meropenem is a preferred agent against CRE cystitis for isolates that remain susceptible to 

meropenem, since most of these isolates do not produce carbapenemases [44]. Meropenem should be 

avoided if carbapenemase testing is positive, even if susceptibility to meropenem is demonstrated. 

If none of the preferred agents is active, ceftazidime-avibactam, meropenem-vaborbactam, 

imipenem-cilastatin-relebactam, and cefiderocol are alternative options for CRE cystitis [51-55]. Data are 

insufficient to favor one agent over the others. Although a clinical trial demonstrated increased 

mortality with cefiderocol compared to best available therapy against a variety of infections due to 

carbapenem-resistant Gram-negative bacteria, these findings do not appear to extend to urinary tract 

infections [54, 56]. Fosfomycin use should be limited to E. coli cystitis as the fos A gene (intrinsic to 

certain Gram-negative organisms such as Klebsiella species, Enterobacter spp., and Serratia marcescens) 

can hydrolyze fosfomycin and may lead to clinical failure [23, 24]. Randomized controlled trial data 

indicate that oral fosfomycin is associated with higher clinical failure than nitrofurantoin for 

uncomplicated cystitis [19]. 
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Colistin is an alternative consideration for treating CRE cystitis only if none of the above agents 

is an option. Colistin converts to its active form in the urinary tract; clinicians should remain cognizant of 

the associated risk of nephrotoxity [57]. Polymyxin B should not be used as treatment for CRE cystitis 

due to its predominantly nonrenal clearance. 

 

Question 2: What are preferred antibiotics for the treatment of pyelonephritis and complicated 

urinary tract infections (cUTIs) caused by CRE? 

Recommendation: Ceftazidime-avibactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, 

and cefiderocol are preferred treatment options for pyelonephritis and cUTIs caused by CRE resistant to 

both ertapenem and meropenem. Extended-infusion meropenem is a preferred treatment option for 

pyelonephritis and cUTIs caused by CRE resistant to ertapenem but susceptible to meropenem, when 

carbapenemase testing results are either not available or negative. 

Rationale: cUTIs are defined as a UTI occurring in association with a structural or functional abnormality 

of the genitourinary tract, or any UTI in a male patient. Ceftazidime-avibactam, meropenem-

vaborbactam, imipenem-cilastatin-relebactam, and cefiderocol are preferred treatment options for 

pyelonephritis and cUTIs caused by CRE resistant to both ertapenem and meropenem based on 

randomized controlled trials showing non-inferiority of these agents to common comparator agents for 

UTIs [51-55]. Data are insufficient to favor one agent over the others. Although a clinical trial 

demonstrated increased mortality with cefiderocol compared to best available therapy against a variety 

of infections due to carbapenem-resistant Gram-negative bacteria, these findings do not appear to 

extend to UTIs [54, 56]. 

Extended-infusion meropenem is a preferred agent  against pyelonephritis and cUTI by CRE that 

remain susceptible to meropenem, since most of these isolates do not produce carbapenemases [44]. 

Meropenem should be avoided if carbapenemase testing is positive, even if susceptibility to meropenem 

is demonstrated. 

In patients in whom the potential for nephrotoxicity is deemed acceptable, once-daily 

aminoglycosides for a full treatment course is an alternative option. Once-daily plazomicin was 

noninferior to meropenem in a randomized controlled trial that included patients with pyelonephritis 
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and cUTIs caused by Enterobacterales [58]. Individual aminoglycosides are equally effective if 

susceptibility is demonstrated. In general, higher percentages of CRE clinical isolates are susceptible to 

amikacin and plazomicin than to other aminoglycosides [49, 50]. Plazomicin may remain active against 

isolates resistant to amikacin. Oral fosfomycin does not achieve adequate concentrations in the renal 

parenchyma and should be avoided if the upper urinary tract is infected [27]. 

 

Question 3: What are preferred antibiotics for the treatment of infections outside of the urinary tract 

caused by CRE resistant to ertapenem but susceptible to meropenem, when carbapenemase testing 

results are either not available or negative? 

Recommendation: Extended-infusion meropenem is the preferred treatment for infections outside of 

the urinary tract caused by CRE resistant to ertapenem but susceptible to meropenem, when 

carbapenemase testing results are either not available or negative. 

Rationale: Extended-infusion meropenem is recommended against infections outside of the urinary tract 

by CRE that remain susceptible to meropenem since most of these isolates do not produce 

carbapenemases [44]. Meropenem should be avoided if carbapenemase testing is positive, even if 

susceptibility to meropenem is demonstrated. 

Ceftazidime-avibactam is an alternative treatment for ertapenem-resistant, meropenem-

susceptible CRE infections outside of the urinary tract. However, the panel prefers to reserve 

ceftazidime-avibactam for treatment of infections caused by CRE resistant to all carbapenems, to 

preserve its activity. When carbapenemase production is present, infections should be treated as if the 

causative organism is meropenem-resistant, regardless of the meropenem MIC. The panel recommends 

against the use of meropenem-vaborbactam or imipenem-cilastatin-relebactam to treat ertapenem-

resistant, meropenem-susceptible infections caused by CRE since these agents do not offer any 

significant advantage beyond that of extended-infusion meropenem. 

 

Question 4: What are the preferred antibiotics for the treatment of infections outside of the urinary 

tract caused by CRE resistant to both ertapenem and meropenem, when carbapenemase testing 

results are either not available or negative? 
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Recommendation: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-

relebactam are the preferred treatment options for infections outside of the urinary tract caused by CRE 

resistant to both ertapenem and meropenem, when carbapenemase testing results are either not 

available or negative. 

Rationale: The vast majority of infections caused by CRE in the United States resistant to both 

ertapenem and meropenem are caused by organisms that either do not produce carbapenemases or by 

organisms that produce KPC-carbapenemases [44]. Ceftazidime-avibactam, meropenem-vaborbactam, 

and imipenem-cilastatin-relebactam are preferred treatment options for CRE infections resistant to both 

ertapenem and meropenem, without additional information regarding carbapenemase status. These 

agents are associated with improved clinical outcomes and reduced toxicity compared to other 

regimens commonly used to treat CRE infections, which are generally polymyxin-based [59-63].  

Comparative effectiveness studies between the preferred agents are limited. An observational 

study including 131 patients with CRE infections found no difference in clinical outcomes between 

patients treated with ceftazidime-avibactam or meropenem-vaborbactam [64]. Significantly less clinical 

information is available for imipenem-cilastatin-relebactam than for the other preferred treatment 

options for the treatment of CRE infections. However, in vitro activity of this combination against CRE 

[65-67], clinical experience with imipenem-cilastatin, and the stability of relebactam as a β-lactamase 

inhibitor [68] suggest imipenem-cilastatin-relebactam is likely to be effective for CRE infections. 

Available data suggest that the emergence of ceftazidime-avibactam resistance is more common 

than emergence of meropenem-vaborbactam resistance following exposure to the respective agents 

[64, 69-73]. As each of these drugs is used more extensively, it is anticipated that additional data on 

resistance and comparative effectiveness will emerge. 

Cefiderocol is an alternative treatment option for CRE infections, regardless of the mechanism 

of resistance to carbapenems. Cefiderocol has reliable in vitro activity against CRE, including isolates 

with otherwise highly resistant phenotypes [74-76]. In a clinical trial, cefiderocol was compared to best 

available therapy, which frequently consisted of colistin-based regimens, for the treatment of 

carbapenem-resistant Gram-negative infections in 118 patients; 51% of patients were infected with CRE 

[56]. Mortality at 28 days was higher in the cefiderocol arm. These findings were most striking for the 

treatment of pneumonia and bloodstream infections. Until more data are available to define 

subpopulations in whom cefiderocol can be used effectively and safely beyond the urinary tract, the 
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panel recommends that this agent be reserved for CRE infections in which preferred agents are 

unavailable due to intolerance or resistance. 

If a patient is infected with a CRE strain with unknown carbapenemase status and the patient 

has recently traveled from an area where metallo-β-lactamases are endemic (e.g., Middle East, South 

Asia, Mediterranean) [77], treatment with ceftazidime-avibactam plus aztreonam, or cefiderocol 

monotherapy are recommended. Preferred treatment approaches for infections caused by metallo-β-

lactamase producers also provide activity against bacteria producing KPCs or OXA-48-like enzymes. 

In patients with intra-abdominal infections, tigecycline and eravacycline are acceptable 

monotherapy options; high dose tigecycline may be more effective than standard dose tigecycline for 

complicated intra-abdominal infections, as listed in Table 1 [78-80]. Their activity is independent of the 

presence or type of carbapenemases. The use of tigecycline or eravacycline should generally be limited 

to the treatment of intra-abdominal infections. These agents achieve rapid tissue distribution following 

administration, resulting in limited concentration in the urine and poor serum concentrations [81]. 

 

Question 5: What are the preferred antibiotics for the treatment of infections outside of the urinary 

tract caused by CRE if carbapenemase production is present? 

Recommendation: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-

relebactam are the preferred treatment options for KPC-producing infections outside of the urinary 

tract. Ceftazidime-avibactam in combination with aztreonam, or cefiderocol as monotherapy are 

preferred treatment options for NDM and other metallo-β-lactamase-producing CRE infections. 

Ceftazidime-avibactam is the preferred treatment for OXA-48-like-producing CRE infections. 

Rationale: Ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam 

provide activity against Enterobacterales that produce KPC enzymes, the most common 

carbapenemases in the United States [65, 66, 82-84]. If a disease-causing Enterobacterales is 

carbapenemase-producing but the specific carbapenemase enzyme is unknown, it is reasonable to treat 

as if the strain is a KPC producer. Comparative effectiveness studies of the preferred agents are limited. 

An observational study including 131 patients with CRE infections found no difference in clinical 

outcomes following treatment with ceftazidime-avibactam or meropenem-vaborbactam [64]. 
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Significantly less clinical information is available for imipenem-cilastatin-relebactam than for the other 

preferred treatment options for the treatment of CRE infections. However, in vitro susceptibility activity 

of this combination against CRE [65-67], clinical experience with imipenem-cilastatin, and the stability of 

relebactam as a β-lactamase inhibitor [68] suggest imipenem-cilastatin-relebactam is likely to be 

effective for CRE infections. Available data suggest that the emergence of ceftazidime-avibactam 

resistance is more common than emergence of meropenem-vaborbactam resistance following exposure 

to the respective agents [64, 69-73]. As each of these drugs is used more extensively, it is anticipated 

that additional data on resistance and comparative effectiveness will emerge. 

If a metallo-β-lactamase (i.e., NDM, VIM, or IMP) is identified, preferred antibiotic options 

include ceftazidime-avibactam plus aztreonam, or cefiderocol monotherapy [85-89]. Clinical outcomes 

data comparing these two treatment strategies are not available. 

If an OXA-48-like enzyme is identified, ceftazidime-avibactam is preferred and cefiderocol is an 

alternative option. Meropenem-vaborbactam and imipenem-cilastatin-relebactam have limited to no 

activity against CRE producing OXA-48-like enzymes. 

In patients with intra-abdominal infections, tigecycline and eravacycline are acceptable 

monotherapy options; high dose tigecycline may be more effective than standard dose tigecycline for 

complicated intra-abdominal infections, as listed in Table 1 [78-80]. Their activity is independent of the 

presence of carbapenemases. The panel recommends avoiding tigecycline or eravacycline for the 

treatment of most CRE infections other than intra-abdominal infections. These agents achieve rapid 

tissue distribution following administration, resulting in limited concentration in the urine and poor 

serum concentrations [81]. 

 

Question 6: What is the role of polymyxins for the treatment of infections caused by CRE? 

Recommendation: Polymyxin B and colistin should be avoided for the treatment of infections caused by 

CRE. Colistin can be considered as a last resort for uncomplicated CRE cystitis. 

Rationale: Observational and randomized-controlled trial data indicate increased mortality and excess 

nephrotoxicity associated with polymyxin-based regimens relative to comparator agents [59-61, 63]. 

Concerns about the clinical effectiveness of polymyxins and accuracy of in vitro polymyxin susceptibility 
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testing led the Clinical and Laboratory Standards Institute to eliminate a susceptible category for colistin 

and polymyxin B [18]. The panel recommends that these agents be avoided for the treatment of CRE 

infections, with the exception of colistin as a last resort agent against CRE cystitis. Polymyxin B should 

not be used as treatment for CRE cystitis, due to its predominantly nonrenal clearance. 

Question 7: What is the role of combination antibiotic therapy for the treatment of infections caused 

by CRE? 

Recommendation: Combination antibiotic therapy (i.e., the use of a β-lactam agent in combination with 

an aminoglycoside, fluoroquinolone, or polymyxin) is not routinely recommended for the treatment of 

infections caused by CRE. 

Rationale: Although empiric combination antibiotic therapy to broaden the likelihood of at least one 

active therapeutic agent for patients at risk for CRE infections is reasonable, data do not indicate that 

continued combination therapy – once the β-lactam agent has demonstrated in vitro activity – offers 

any additional benefit [90]. Rather, the continued use of a second agent increases the likelihood of 

antibiotic-associated adverse events [90]. 

Observational data and clinical trials comparing ceftazidime-avibactam, meropenem-

vaborbactam, and imipenem-cilastatin-relebactam to combination regimens to treat CRE infections have 

not shown the latter to have added value [59-63]. Randomized trial data are not available comparing 

these agents as monotherapy and as a component of combination therapy (e.g., ceftazidime-avibactam 

versus ceftazidime-avibactam and amikacin). However, based on available outcomes data, clinical 

experience, and known toxicities associated with aminoglycosides, fluoroquinolones, and polymyxins, 

the expert panel does not recommend combination therapy for CRE infections, when susceptibility to a 

preferred β-lactam agent has been demonstrated. 

 

Difficult-to-Treat Resistance (DTR) Pseudomonas aeruginosa 

The CDC reports that 32,600 cases of multidrug-resistant P. aeruginosa infection occurred in 

patients hospitalized in the United States in 2017, resulting in 2,700 deaths [2]. Multidrug resistance is 

defined as non-susceptibility to at least one antibiotic in at least three classes for which P. aeruginosa 

susceptibility is generally expected: penicillins, cephalosporins, fluoroquinolones, aminoglycosides, and 
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carbapenems. In 2018, the concept of “difficult-to-treat” resistance (DTR) was proposed [5]. In this 

guidance document, DTR is defined as P. aeruginosa exhibiting non-susceptibility to all of the following: 

piperacillin-tazobactam, ceftazidime, cefepime, aztreonam, meropenem, imipenem-cilastatin, 

ciprofloxacin, and levofloxacin. Table 4 outlines preferred and alternative treatment recommendations 

for DTR-P. aeruginosa infections. Treatment recommendations for DTR-P. aeruginosa infections assume 

in vitro activity of preferred and alternative antibiotics has been demonstrated. 

 

Question 1: What are preferred antibiotics for the treatment of uncomplicated cystitis caused by DTR-

P. aeruginosa? 

Recommendation: Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, 

cefiderocol, or a single-dose of an aminoglycoside are the preferred treatment options for 

uncomplicated cystitis caused by DTR-P. aeruginosa. 

Rationale: Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, and 

cefiderocol are preferred treatment options for uncomplicated DTR P. aeruginosa cystitis, based on 

randomized controlled trials showing non-inferiority of these agents to common comparator agents for 

urinary tract infections [52, 54, 55, 91]. Data are insufficient to favor one of the agents over the others, 

and available trials generally do not include patients infected by pathogens with DTR phenotypes. 

Although a clinical trial demonstrated increased mortality with cefiderocol compared to best available 

therapy against a variety of infections due to carbapenem-resistant Gram-negative bacteria, these 

findings do not appear to extend to urinary tract infections [54, 56]. 

A single dose of an aminoglycoside is also a preferred treatment option. Aminoglycosides are 

nearly exclusively eliminated by the renal route in their active form. A single intravenous dose is 

generally effective for cystitis, with minimal toxicity, but robust trial data to formally evaluate their 

activity for cystitis are lacking [22]. Plazomicin is unlikely to provide any incremental benefit against DTR-

P. aeruginosa if resistance to all other aminoglycosides is demonstrated [92]. 

Colistin, but not polymyxin B, is an alternate consideration for treating DTR-P. aeruginosa 

cystitis as it converts to its active form in the urinary tract; clinicians should remain cognizant of the 

associated risk of nephrotoxity [57]. The panel does not recommend the use of oral fosfomycin for DTR-
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P. aeruginosa cystitis as it is associated with a high likelihood of clinical failure [93, 94]. This is in part 

due to the presence of the fos A gene, which is intrinsic to P. aeruginosa [23]. 

 

Question 2: What are preferred antibiotics for the treatment of pyelonephritis and complicated 

urinary tract infections (cUTI) caused by DTR-P. aeruginosa? 

Recommendation: Ceftolozane-tazobactam, ceftazidime-avibactam, imipenem-cilastatin-relebactam, 

and cefiderocol are the preferred treatment options for pyelonephritis and cUTI caused by DTR-P. 

aeruginosa. 

Rationale: cUTIs are defined as a UTI occurring in association with a structural or functional abnormality 

of the genitourinary tract, or any UTI in a male patient. Ceftolozane-tazobactam, ceftazidime-avibactam, 

imipenem-cilastatin-relebactam, and cefiderocol are preferred treatment options for DTR-P. aeruginosa 

pyelonephritis and cUTI, based on randomized controlled trials showing non-inferiority of these agents 

to common comparator agents [52, 54, 55, 91]. Data are insufficient to favor one of the agents over the 

others and available trials generally do not include DTR phenotypes. Although a clinical trial 

demonstrated increased mortality with cefiderocol compared to best available therapy against a variety 

of infections due to carbapenem-resistant Gram-negative bacteria, these findings do not appear to 

extend to UTIs [54, 56]. 

In patients in whom the potential for nephrotoxicity is deemed acceptable, once-daily 

aminoglycosides is an alternative option. Plazomicin is unlikely to provide any incremental benefit 

against DTR-P. aeruginosa if resistance to all other aminoglycosides is demonstrated [92]. Oral 

fosfomycin should be avoided for DTR-P. aeruginosa pyelonephritis and cUTI. This is because of the 

presence of the fosA gene intrinsic to P. aeruginosa which confers fosfomycin resistance and because 

oral fosfomycin does not achieve adequate concentrations in the renal parenchyma [23, 27]. 

 

Question 3: What are preferred antibiotics for the treatment of infections outside of the urinary tract 

caused by DTR-P. aeruginosa? 
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Recommendation: Ceftolozane-tazobactam, ceftazidime-avibactam, and imipenem-cilastatin-

relebactam, as monotherapy, are the preferred treatment options for the treatment of infections 

outside of the urinary tract caused by DTR-P. aeruginosa. 

Rationale: Ceftolozane-tazobactam, ceftazidime-avibactam, and imipenem-cilastatin-relebactam, as 

monotherapy, are preferred options for the treatment of DTR-P. aeruginosa infections outside of the 

urinary tract, based on known in vitro activity, observational studies, and clinical trial data [52, 63, 82, 

84, 95-104]. The majority of these observational studies and clinical trial data do not include patients 

with DTR-P. aeruginosa infections. Clinical outcomes studies comparing the effectiveness of these three 

agents for DTR-P. aeruginosa infections are not available. 

The percentage of P. aeruginosa clinical isolates that are susceptible to ceftolozane-tazobactam 

is generally higher than percentages susceptible to comparator agents. This is likely because ceftolozane 

does not rely on an inhibitor to restore susceptibility to an otherwise inactive drug (i.e., ceftolozane has 

independent activity against DTR-P. aeruginosa). Neither ceftazidime nor imipenem is active against 

DTR-P. aeruginosa. Avibactam and relebactam expand activity of these agents mainly through inhibition 

of AmpC, but other complex resistance mechanisms are unlikely to be impacted. Since ceftolozane-

tazobactam and ceftazidime-avibactam are similar in their mechanisms of action [105], cross-resistance 

between these agents can be observed [106]. 

Cefiderocol is an alternative treatment option. Cefiderocol has reliable in vitro activity against P. 

aeruginosa, including isolates with otherwise highly resistant phenotypes [74-76]. In a clinical trial, 

cefiderocol was compared to best available therapy, which frequently consisted of colistin-based 

regimens, for the treatment of carbapenem-resistant Gram-negative infections in 118 patients; 24% of 

patients were infected with P. aeruginosa [56]. Mortality at 28 days was higher in the cefiderocol arm. 

These findings were most striking for the treatment of pneumonia and bloodstream infections. Until 

more data are available to define subpopulations in whom cefiderocol can be used effectively and safely 

beyond the urinary tract, the panel recommends that this agent be reserved for DTR-P. aeruginosa 

infections in which preferred agents are unavailable due to intolerance or resistance. 

 Aminoglycoside monotherapy (outside of the urinary tract) is an alternative option that should 

be limited to uncomplicated bloodstream infections (i.e., urinary source or other sources for which 

control is achieved, such as the removal of an infected vascular catheter) when no preferred treatment 
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option is available. Plazomicin is unlikely to provide any incremental benefit against DTR-P. aeruginosa if 

resistance to all other aminoglycosides is demonstrated [92]. 

 

Question 4: What is the role of combination antibiotic therapy for the treatment of infections caused 

by DTR-P. aeruginosa? 

Recommendation: Combination antibiotic therapy is not routinely recommended for infections caused 

by DTR-P. aeruginosa if in vitro susceptibility to a first-line antibiotic (i.e., ceftolozane-tazobactam, 

ceftazidime-avibactam, or imipenem-cilasatin-relebactam) has been confirmed. 

Rationale: Although empiric combination antibiotic therapy (i.e., the addition of an aminoglycoside or 

polymyxin to a β-lactam agent) to broaden the likelihood of at least one active therapeutic agent for 

patients at risk for DTR-P. aeruginosa infections is reasonable, data do not indicate that continued 

combination therapy – once the β-lactam agent has demonstrated in vitro activity – offers any additional 

benefit over monotherapy with the β-lactam [90]. Rather, the continued use of a second agent increases 

the likelihood of antibiotic-associated adverse events [90]. 

Observational data and clinical trials that have compared ceftolozane-tazobactam and 

imipenem-cilastatin-relebactam, usually given as monotherapy, to combination regimens for drug-

resistant P. aeruginosa infections have not shown the latter to have added value [63, 98]. Randomized 

trial data comparing ceftolozane-tazobactam, ceftazidime-avibactam, or imipenem-cilastatin-relebactam 

as monotherapy and as a component of combination therapy are not available (e.g., ceftazidime-

avibactam versus ceftazidime-avibactam and amikacin). Based on available outcomes data, clinical 

experience, and known toxicities associated with aminoglycosides and polymyxins, the panel agrees that 

combination therapy is not routinely recommended for DTR-P. aeruginosa infections, when 

susceptibility to a preferred β-lactam agent has been demonstrated. 

If no preferred agent demonstrates activity against DTR-P. aeruginosa, an aminoglycoside (if 

susceptibility is demonstrated) can be considered in combination with either ceftolozane-tazobactam, 

ceftazidime-avibactam, or imipenem-cilastatin-relebactam, preferentially selecting the β-lactam-β-

lactamase inhibitor agent for which the MIC is closest to its susceptibility breakpoint. For example, if 

ceftolozane-tazobactam and ceftazidime-avibactam MICs against a DTR-P. aeruginosa isolate are both 
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>128/4 mcg/mL (highly resistant [18, 107]) and the imipenem-cilastatin-relebactam MIC is 4/4 mcg/mL 

(intermediate category [107]), imipenem-cilastatin-relebactam in combination with an active 

aminoglycoside should be favored. Data are lacking demonstrating a benefit to this approach and it 

should be considered as a last resort. Similarly, data are lacking whether this approach will yield 

favorable clinical outcomes compared to cefiderocol, either as monotherapy or combination therapy. If 

no aminoglycoside demonstrates in vitro activity, polymyxin B can be considered in combination with 

the β-lactam-β-lactamase inhibitor. Polymyxin B is preferred over colistin for non-urinary tract infections 

because (1) it is not administered as a prodrug and therefore can achieve more reliable plasma 

concentrations than colistin, and (2) it has a reduced risk of nephrotoxicity, although limitations across 

studies preclude accurate determination of the differential risk of nephrotoxicity [108-113]. 

 

Conclusions 

The field of AMR is dynamic and rapidly evolving, and the treatment of antimicrobial resistant 

infections will continue to challenge clinicians. As newer antibiotics against resistant pathogens are 

incorporated into clinical practice, we are learning more about their effectiveness, and propensity to 

resistance. This AMR Treatment Guidance document will be updated through an iterative review 

process that will incorporate new evidence-based data. Furthermore, the panel will expand 

recommendations to include other problematic Gram-negative pathogens in future versions of the 

document. 
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Table 1.  Suggested dosing of antibiotics for the treatment of extended-spectrum β-lactamase producing 
Enterobacterales (ESBL-E), carbapenem-resistant Enterobacterales (CRE), and difficult-to-treat resistance (DTR)- 
Pseudomonas aeruginosa infections  

Agent Adult Dosage (assuming normal renal and liver function) 
Amikacin  Cystitis: 15 mg/kg/dose1 IV once 

 
All other infections: 20 mg/kg/dose1 IV x 1 dose, subsequent doses and dosing 
interval based on pharmacokinetic evaluation 
 

Amoxicillin-clavulanate  Cystitis: 875 mg (amoxicillin component) PO q12h 
 

Cefiderocol  2 g IV q8h, infused over 3 hours 
 

Ceftazidime-avibactam  2.5 g IV q8h, infused over 3 hours 
 

Ceftazidime-avibactam and 
aztreonam  
 
Ceftazidime-avibactam should be 
infused concurrently with 
aztreonam. 

Ceftazidime-avibactam: 2.5 g IV q8h, infused over 3 hours  
 
PLUS 
 
Aztreonam: 2 g IV q8h, infused over 3 hours 
 
 

Ceftolozane-tazobactam  Cystitis: 1.5 g IV q8h, infused over 1 hour 
 
All other infections: 3 g IV q8h; infused over 3 hours 
 

Ciprofloxacin  400 mg IV q8h or 750 mg PO q12h 
 

Colistin  
 

Refer to international consensus guidelines on polymyxins1 

Eravacycline  1 mg/kg/dose IV q12h 
 

Ertapenem  1 g IV q24h, infused over 30 minutes 
 

Fosfomycin  Cystitis: 3 g PO x 1 dose 
 

Gentamicin  Cystitis: 5 mg/kg/dose1 IV once 
 
All other infections: 7 mg/kg/dose1 IV x 1 dose, subsequent doses and dosing 
interval based on pharmacokinetic evaluation 
 

Imipenem-cilastatin  Cystitis (standard infusion): 500 mg IV q6h, infused over 30 minutes 
 
All other infections (extended-infusion): 500 mg IV q6h; infused over 3 hours  
 

Imipenem-cilastatin-relebactam  1.25 g IV q6h, infused over 30 minutes 
 



24 

Levofloxacin  750 mg IV/PO q24h 
 

Meropenem  Cystitis (standard infusion): 1 g IV q8h 
 
All other infections (extended-infusion): 2 g IV q8h, infused over 3 hours 
 

Meropenem-vaborbactam  4 g IV q8h, infused over 3 hours 
 

Nitrofurantoin  Cystitis: Macrocrystal/monohydrate (Macrobid®) 100 mg PO q12h 
 
Cystitis: Oral suspension: 50 mg q6h (M 
 

Plazomicin  Cystitis: 15 mg/kg1 IV x x1 dose 
 
All other infections: 15 mg/kg1 IV x 1 dose, subsequent doses and dosing interval 
based on pharmacokinetic evaluation  
 

Polymyxin B  Refer to international consensus guidelines on polymyxins2  
 

Tigecycline  Uncomplicated intra-abdominal infections (standard dose): 100 mg IV x 1 dose, 
then 50 mg IV q12h 
 
Complicated intra-abdominal infections (high dose): 200 mg IV x 1 dose, then 
100 mg IV q12h 
 

Tobramycin  Cystitis: 7 mg/kg/dose1 IV x 1 dose 
 
All other infections: 7 mg/kg/dose1 IV x 1 dose; subsequent doses and dosing 
interval based on pharmacokinetic evaluation 

Trimethoprim-sulfamethoxazole  Cystitis: 160 mg (trimethoprim component) IV/PO q12h 
 
Other infections: 8-10 mg/kg/day (trimethoprim component) IV/PO divided q8-
12h; maximum dose 320 mg PO q8h 
 

1Recommend using adjusted body weight for patients >120% of ideal body weight for aminoglycoside dosing. 

2 Tsuji BT, Pogue JM, Zavascki AP, et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: 
Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious 
Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology 
(ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 
2019; 39(1): 10-39. 
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Table 2.  Recommended antibiotic treatment options for presumed or confirmed extended-spectrum β-lactamase 
producing Enterobacterales (ESBL-E), assuming in vitro susceptibility to agents in table 
 
Source of 
Infection 

Preferred Treatment Alternative Treatment  
(first-line options not available or tolerated) 

Cystitis 
 

Nitrofurantoin, trimethoprim-
sulfamethoxazole 
 

Amoxicillin-clavulanate, single-dose 
aminoglycosides, fosfomycin (E. coli only) 
 
Ciprofloxacin, levofloxacin, ertapenem, 
meropenem, imipenem-cilastatin 

Pyelonephritis 
or cUTI1 

Ertapenem, meropenem, imipenem-cilastatin, 
ciprofloxacin, levofloxacin, or trimethoprim-
sulfamethoxazole 

 

Infections 
outside of the 
urinary tract 
 

Meropenem, imipenem-cilastatin, ertapenem 
 
Oral step-down therapy to ciprofloxacin, 
levofloxacin, or trimethoprim-
sulfamethoxazole can be considered2.  
 

 

1cUTI: Complicated urinary tract infections are defined as UTIs occurring in association with a structural or 
functional abnormality of the genitourinary tract, or any UTI in a male patient. 
2Oral step-down therapy can be considered after (1) susceptibility to the oral agent is demonstrated, (2) patients 
are afebrile and hemodynamically stable, (3) appropriate source control is achieved, and (4) there are no issues 
with intestinal absorption. 
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Table 3.  Recommended antibiotic treatment options for carbapenem-resistant Enterobacterales (CRE), assuming in 
vitro susceptibility to agents in table 
 
Source of Infection Preferred Treatment Alternative Treatment  

(first-line options not available or 
tolerated) 

Cystitis  Ciprofloxacin, levofloxacin, trimethoprim-
sulfamethoxazole, nitrofurantoin, or a 
single-dose of an aminoglycoside 
 
Meropenem1 (standard-infusion): only if 
ertapenem resistant, meropenem 
susceptible, AND carbapenemase testing 
results are either not available or 
negative. 

Ceftazidime-avibactam, 
meropenem-vaborbactam, 
imipenem-cilastatin-relebactam, 
and cefiderocol 
 
Colistin (only when no alternative 
options are available) 

Pyelonephritis or cUTI2 
 

Ceftazidime-avibactam, meropenem-
vaborbactam, imipenem-cilastatin-
relebactam, and cefiderocol 
 
Meropenem1 (extended-infusion): only if 
ertapenem resistant, meropenem 
susceptible, AND carbapenemase testing 
results are either not available or 
negative. 
 

Once-daily aminoglycosides 

Infections outside of the urinary 
tract  
 
Resistant to ertapenem, susceptible 
to meropenem, AND 
carbapenemase testing results are 
either not available or negative 
 

Meropenem1 (extended-infusion) Ceftazidime-avibactam 

Infections outside of the urinary 
tract  
 
Resistant to ertapenem, 
meropenem, AND carbapenemase 
testing results are either not 
available or negative 
 

Ceftazidime-avibactam, meropenem-
vaborbactam, and imipenem-cilastatin-
relebactam 

Cefiderocol 
 
 
Tigecycline, eravacycline (intra-
abdominal infections) 

KPC identified 
 
(Or carbapenemase positive but 
identity of carbapenemase 
unknown3) 

Ceftazidime-avibactam, meropenem-
vaborbactam, imipenem-cilastatin-
relebactam 
 
 

Cefiderocol  
 
Tigecycline, eravacycline (intra-
abdominal infections) 
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Metallo-β-lactamase (i.e., NDM, 
VIM, or IMP) carbapenemase 
identified 
 

Ceftazidime-avibactam + aztreonam, 
cefiderocol 
 

Tigecycline, eravacycline (intra-
abdominal infections) 
 

OXA-48-like carbapenemase 
identified 

Ceftazidime-avibactam 
 
 

Cefiderocol  
 
Tigecycline, eravacycline (intra-
abdominal infections) 

1The majority of infections caused by CRE resistant to ertapenem but susceptible to meropenem are caused by 
organisms that do not produce carbapenemases. 

2cUTI: Complicated urinary tract infections are defined as UTIs occurring in association with a structural or 
functional abnormality of the genitourinary tract, or any UTI in a male patient. 
3The vast majority of carbapenemase producing Enterobacterales infections in the United States are due to 
bacteria that produce Klebsiella pneumoniae carbapenemase (KPC). If a disease-causing Enterobacterales is 
carbapenemase-producing but the specific carbapenemase enzyme is unknown, it is reasonable to treat as if 
the strain is a KPC-producer. If a patient is infected with a CRE strain with an unknown carbapenemase status 
and the patient has recently traveled from an area where metallo-β-lactamases are endemic (e.g., Middle East, 
South Asia, Mediterranean), treatment with ceftazidime-avibactam plus aztreonam, or cefiderocol 
monotherapy are recommended. Preferred treatment approaches for infections caused by metallo-β-
lactamase producers also provide activity against KPC and OXA-48-like enzymes. 
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Table 4.  Recommended antibiotic treatment options for difficult-to-treat (DTR) Pseudomonas aeruginosa, assuming 
in vitro susceptibility to agents in table 
 
Source of 
Infection 

Preferred Treatment Alternative Treatment  
(when first-line options not available/tolerated) 

Cystitis 
 

Ceftolozane-tazobactam, ceftazidime-
avibactam, imipenem-relebactam, 
cefiderocol, or a single-dose of an 
aminoglycoside  
 

Colistin  
 
 

Pyelonephritis 
or cUTI1  
 

Ceftolozane-tazobactam, ceftazidime-
avibactam, imipenem-cilastatin-relebactam, 
and cefiderocol 

Once-daily aminoglycosides  

Infections 
outside of the 
urinary tract 
 

Ceftolozane-tazobactam, ceftazidime-
avibactam, or imipenem-cilastatin-relebactam 

Cefiderocol 
 
Aminoglycoside monotherapy: limited to 
uncomplicated bloodstream infections with 
complete source control2  

1cUTI: Complicated urinary tract infections are defined as UTIs occurring in association with a structural or functional 
abnormality of the genitourinary tract, or any UTI in a male patient. 
2Uncomplicated bloodstream infections include a bloodstream infection due to a urinary source or a catheter-related 
bloodstream infection with removal of the infected vascular catheter. 
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